# NEW ANTITUMOR SUBSTANCES, BE-12406A AND BE-12406B, PRODUCED BY A STREPTOMYCETE

# II. STRUCTURE DETERMINATION

# Shigeru Nakajima, Katsuhisa Kojiri<sup>†</sup>, Hiroyuki Suda<sup>†</sup> and Masanori Okanishi<sup>†</sup>

Central Research Laboratories, <sup>†</sup>Exploratory Research Laboratories, Banyu Pharmaceutical Co., Ltd., 2-9-3 Shimo-meguro, Meguro-ku, Tokyo 153, Japan

(Received for publication April 25, 1991)

The structure of BE-12406A and BE-12406B, which were isolated from the culture broth of a streptomycete as antitumor substances, were determined by means of spectral analyses and chemical studies. The structure of BE-12406A is 1-hydroxy-10-methoxy-8-methyl-12- $\alpha$ -L-rhamnopyranosyloxy-6*H*-benzo[*d*]naphtho[1,2-*b*]pyran-6-one, and that of BE-12406B is 1,10-dihydroxy-8-methyl-12- $\alpha$ -L-rhamnopyranosyloxy-6*H*-benzo[*d*]naphtho[1,2-*b*]pyran-6-one.

BE-12406A (1) and BE-12406B (2) are new antitumor substances produced by a streptomycete, strain BA12406, as reported in a previous paper<sup>1)</sup>. The structure determination studies of BE-12406A and BE-12406B are described in this paper.

## Structure of BE-12406A

The physico-chemical data of 1 and 2 were described in the previous paper<sup>1</sup>). The molecular formula of 1 was established as  $C_{25}H_{24}O_9$  from the results of HRFAB-MS (Calcd: m/z 469.1499, Found: m/z 469.1471 (M+H)<sup>+</sup>) and elemental analysis (Calcd: C 61.72, H 5.39 for  $C_{25}H_{24}O_9 \cdot H_2O$ , Found: C 62.26, H 5.31). The UV spectrum of 1 is quite similar to that of gilvocarcin M<sup>2,3</sup>), which is known as toromycin M<sup>4,5</sup>), therefore the existence of the benzonaphthopyranone skeleton was supposed. Comparison of the <sup>1</sup>H NMR data of 1 with that of gilovocarcin M indicated that 1 has a 1,2,3-substituted aromatic ring system as observed in defucogilvocarcin V, however, the chemical shifts of sugar moiety of 1 differ from

Fig. 1. Structures of BE-12406A, BE-12406B, gilvocarcin M and defucogilvocarcin V.



BE-12406A (1)  $R = CH_3$ BE-12406B (2) R = H







Defucogilvocarcin V

| Proton              | 1 <sup>a</sup>           | <b>2</b> <sup>a</sup> | <b>3</b> ª     | <b>4</b> <sup>b</sup> | Defucogilvocarcin <sup>c</sup> |  |
|---------------------|--------------------------|-----------------------|----------------|-----------------------|--------------------------------|--|
| 2                   | 7.00                     | 6.98                  | 6.92           | 7.23                  | 7.01                           |  |
|                     | (br d, 7.6) <sup>d</sup> | (dd, 1.0, 7.7)        | (dd, 0.8, 7.6) | (dd, 1.0, 7.6)        | (dd, 0.8, 7.7)                 |  |
| 3                   | 7.49                     | 7.49                  | 7.48           | 7.60                  | 7.54                           |  |
|                     | (t, 7.9)                 | (t, 7.9)              | (t, 8.1)       | (t, 7.9)              | (t, 8.0)                       |  |
| 4                   | 7.85                     | 7.85                  | 7.80           | 8.56                  | 7.87                           |  |
|                     | (br d, 8.2)              | (br d, 8.2)           | (dd, 0.8, 7.6) | (dd, 1.0, 7.6)        | (dd, 0.8, 7.7)                 |  |
| 7                   | 7.78 (br s)              | 7.69 (br s)           | 7.79 (br s)    | 7.98 (br s)           | 8.03 (d, 1.5)                  |  |
| 9                   | 7.48 (br s)              | 7.29 (br s)           | 7.48 (s)       | 7.20 (br s)           | 7.84 (d, 1.3)                  |  |
| 11                  | 8.70 (s)                 | 8.86 (s)              | 8.30 (s)       | 8.99 (s)              | 8.41 (s)                       |  |
| 8-CH <sub>3</sub>   | 2.50 (s)                 | 2.42 (s)              | 2.50 (s)       | 2.52 (s)              |                                |  |
| 10-OCH <sub>3</sub> | 4.06 (s)                 |                       | 4.08 (s)       | 4.08 (s)              | 4.21 (s)                       |  |
| 10-OH               |                          | 11.07 (s)             |                | —                     |                                |  |
| Ar-OH               | 9.75 (br s)              | 9.75 (br s)           | 10.95 (br s)   |                       |                                |  |
| 1′                  | 5.39 (d, 1.2)            | 5.39 (d, 1.6)         |                | 5.48 (d, 1.6)         | _                              |  |
| 2'                  | 4.10 (m)                 | 4.10 (m)              |                | 5.62                  | —                              |  |
|                     |                          |                       |                | (dd, 1.6, 3.8)        |                                |  |
| 3'                  | 3.78 (m)                 | 3.78 (m)              | 78 (m) — 5.5   |                       | _                              |  |
|                     |                          |                       |                | (dd, 3.8, 9.8)        |                                |  |
| 4'                  | 3.39 (m)                 | 3.39 (m)              | —              | 5.21                  | —                              |  |
|                     |                          |                       |                | (t, 9.8)              | •                              |  |
| 5'                  | 3.80 (m)                 | 3.80 (m)              | —              | 4.18                  |                                |  |
|                     |                          |                       |                | (dq, 9.8, 6.3)        |                                |  |
| 6'                  | 1.25 (d, 6.2)            | 1.23 (d, 6.3)         |                | 1.27 (d, 6.3)         |                                |  |
| OH                  | 5.13 (br s)              | 5.08 (br d, 4.3)      |                | —                     |                                |  |
| OH                  | 4.95 (br d, 5.6)         | 4.94 (br d, 5.6)      | —              |                       | _                              |  |
| OH                  | 4.85 (br d, 5.8)         | 4.81 (br d, 5.8)      |                | —                     |                                |  |
| CH <sub>3</sub> CO  | —                        | —                     | —              | 2.52 (s)              | —                              |  |
|                     | _                        |                       | —              | 2.22 (s)              | —                              |  |
|                     | —                        | _                     |                | 2.09 (s)              |                                |  |
|                     | —                        | <u> </u>              | _              | 2.06 (s)              | —                              |  |

Table 1. <sup>1</sup>H NMR data for 1, 2, 3, 4 and defucogilvocarcin (300 MHz).

<sup>a</sup> In DMSO-*d*<sub>6</sub>.

<sup>b</sup> In CDCl<sub>3</sub>.

° Data in ref 6.

<sup>d</sup> Multiplicity, J in Hz.

| Carbon | 1 <sup>a</sup> | 2ª    | <b>3</b> <sup>a</sup> | Gilvocarcin<br>M <sup>b</sup> | Carbon              | 1 <sup>a</sup> | <b>2</b> <sup>a</sup> | <b>3</b> <sup>a</sup> | Gilvocarcin<br>M <sup>b</sup> |
|--------|----------------|-------|-----------------------|-------------------------------|---------------------|----------------|-----------------------|-----------------------|-------------------------------|
| 1      | 153.4          | 153.7 | 154.0                 | 152.5                         | 10b                 | 112.6          | 113.5                 | 113.6                 | 112.7                         |
| 2      | 111.8          | 111.7 | 110.5                 | 111.4                         | 11                  | 109.5          | 110.1                 | 105.3                 | 101.1                         |
| 3      | 127.7          | 127.8 | 128.1                 | 128.8                         | 12                  | 148.4          | 148.4                 | 149.6                 | 151.3                         |
| 4      | 112.0          | 112.0 | 112.4                 | 125.5                         | 12a                 | 115.8          | 115.9                 | 114.1                 | 114.5                         |
| 4a     | 125.5          | 125.8 | 125.3                 | 123.4                         | 8-CH <sub>3</sub>   | 21.0           | 20.8                  | 21.0                  | 21.0                          |
| 4b     | 140.6          | 140.5 | 138.8                 | 141.3                         | 10-OCH <sub>3</sub> | 56.1           |                       | 56.3                  | 56.0                          |
| 6      | 159.7          | 160.2 | 160.1                 | 159.4                         | 1'                  | 101.5          | 101.2                 |                       | 80.9                          |
| 6a     | 122.0          | 122.3 | 122.9                 | 121.1                         | 2'                  | 70.0           | 70.1                  | _                     | 79.0                          |
| 7      | 121.5          | 122.9 | 121.7                 | 120.7                         | 3'                  | 70.5           | 70.7                  |                       | 78.7                          |
| 8      | 140.0          | 139.8 | 140.2                 | 139.7                         | 4'                  | 71.7           | 71.8                  |                       | 86.1                          |
| 9      | 118.8          | 120.7 | 119.0                 | 118.0                         | 5'                  | 69.8           | 70.0                  |                       | 66.6                          |
| 10 .   | 156.6          | 155.6 | 157.0                 | 156.4                         | 6'                  | 17.7           | 17.8                  | _                     | 20.1                          |
| 10a    | 120.4          | 118.9 | 120.8                 | 120.5                         | 12-OCH <sub>3</sub> |                |                       | —                     | 55.7                          |

Table 2. <sup>13</sup>C NMR data for 1, 2, 3 and gilvocaracin M (75 MHz).

<sup>a</sup> In DMSO-d<sub>6</sub>.

<sup>b</sup> Data in ref 3.







those of gilvocarcins<sup>3</sup>), chrysomycins<sup>7</sup>) or ravidomycins<sup>8</sup>). The <sup>1</sup>H and <sup>13</sup>C NMR data of 1 are shown in Tables 1 and 2, respectively. Hydrolysis of 1 with 1 N HCl-MeOH at 60°C for 90 minutes afforded the chromophore part (3). This observation and the chemical shift of an anomeric carbon in the  $^{13}C$  NMR of 1 suggested that the sugar moiety in 1 should be a O-sugar. The acetylation of 1 with acetic anhydride in pyridine gave a tetra-acetyl derivative (4) (FAB-MS m/z 619 (M+H)<sup>+</sup>). The <sup>1</sup>H NMR data of 4 are listed in Table 1. From the <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 4, the assignments of protons in the sugar moiety could be deduced. By comparison of the <sup>1</sup>H NMR spectrum of 4 with that of 1, the sugar moiety in 1 was indicated to be a rhamnose. NOEs were observed between the methyl proton ( $\delta$  2.52) and 7-H ( $\delta$ 7.98) and 9-H ( $\delta$  7.20) protons, the methoxy proton ( $\delta$  4.08) and 9-H and 11-H ( $\delta$  8.99) protons, the anomeric-H ( $\delta$  5.48) and 11-H protons (Fig. 2). These data suggested that the location of the methyl and methoxy groups were identical with those of gilvocarcin M, and the sugar moiety was located at C-12 position. This presumption was confirmed by the long-range selective proton decoupling (LSPD) experiments of 1 (Fig. 3). From the observation of  ${}^{1}H{}^{-13}C$  long range coupling between the anomeric proton and the C-12 carbon ( $\delta$  148.4), the rhamnose moiety should be connected to C-12. The location of OH group in A-ring was determined by the LSPD experiments. The signal for C-4b ( $\delta$  140.6) was collapsed by irradiation of the signal at 7.85 ppm, therefore, C-4 carbon should bear a proton, and the signal for the C-1 carbon ( $\delta$  153.4) was collapsed by irradiation of the signal at 3-H (Fig. 3). These data suggested that OH group in A-ring was located at C-1 position.

In the <sup>1</sup>H NMR spectrum of **4**, a NOE was observed between the C-5' and the C-3' protons, but not observed between the C-5' and C-1' protons. These data suggested the  $\alpha$ -linkage of the sugar. The large coupling constant  $J_{C-1'-1'-H}$  (169 Hz) of **1** also supported the  $\alpha$ -linkage of rhamnose in 1<sup>9</sup>). Methanolysis of **1** gave 1-O-methyl sugar (**5**), which was identical with  $\alpha$ -1-O-methyl rhamnose by comparison of the <sup>1</sup>H and <sup>13</sup>C NMR spectra. The optical rotation value of **5** ( $[\alpha]_D^{20} - 72.9^\circ$ , c 1, MeOH)<sup>9</sup>) suggested that the configuration of the rhamnose is L-form. From the data described above, the structure of **1** was determined to be 1-hydroxy-10-methoxy-8-methyl-12- $\alpha$ -L-rhamnopyranosyloxy-6*H*-benzo[*d*]naphtho[1,2-*b*]pyran-6-one, as shown in Fig. 1.

### Structure of BE-12406B

The molecular formula of 2 was determined as  $C_{24}H_{22}O_9$  by HRFAB-MS (Calcd: m/z 455.1342, Found: m/z 455.1346 (M+H)<sup>+</sup>). As the UV spectrum of 2 is similar to the spectrum of 1, 2 apparently

#### THE JOURNAL OF ANTIBIOTICS

has the same chromophore as 1. The <sup>1</sup>H and <sup>13</sup>C NMR spectra of 2 (Tables 1 and 2, respectively) are similar to those of 1 except that a methoxy signal in 1 is not observed in 2, instead, a phenolic proton was found in the <sup>1</sup>H NMR spectrum of 2. By comparison of the NMR data and the molecular formula between 1 and 2, it was suggested that the methoxy group in 1 is replaced by the hydroxy group in 2. This was confirmed by comparison between the homogate decoupling spectrum of 1 and 2. The signal of C-10 carbon was split into a broad singlet in 2, whereas it was split into a broad quartet in 1, while the other signals remained essentially identical. From the large coupling constant  $J_{C-1'-1'-H}$  (171 Hz) of 2 and the optical rotation value ( $[\alpha]_{D}^{20} - 82.12^{\circ}$ , c 1, MeOH), the structure of 2 was determined to be 1,10-dihydroxy-8-methyl-12- $\alpha$ -L-rhamnopyranosyloxy-6*H*-benzo[*d*]naphtho[1,2-*b*]pyran-6-one, as shown in Fig. 1.

#### Experimental

MS was carried out on a Jeol JMS-DX 300 spectrometer. NMR spectra were recorded on a Varian VXR 300 spectrometer with <sup>1</sup>H NMR at 300 MHz and <sup>13</sup>C NMR at 75 MHz. TMS was used as an internal standard. Optical rotations were measured by a Horiba SEPA-200 high-sensitivity polarimeter.

#### Hydrolysis of BE-12406A

To a suspension of BE-12406A (1, 41 mg) in 4.5 ml of MeOH, 10% dry HCl-MeOH (1.5 ml) was added and kept for 90 minutes at 60°C. The reaction mixture was filtered to remove pale yellow crystals (3, 29 mg) and the crystals were washed with MeOH. The filtrate and washing were combined and evaporated to give a residue, which was purified on a Sephadex LH-20 column with MeOH as an eluant to give 5 (9.8 mg). FAB-MS (negative): m/z 177 (M-H)<sup>-</sup>; <sup>1</sup>H NMR (D<sub>2</sub>O)  $\delta$  4.70 (1-H), 3.94 (2-H), 3.72 (3-H), 3.64 (5-H), 3.44 (4-H), 3.40 (OCH<sub>3</sub>), 1.31 (6-H); <sup>13</sup>C NMR (D<sub>2</sub>O)  $\delta$  102.6 (C-1, J=169 Hz), 73.8 (C-4), 72.1 (C-3), 71.8 (C-2), 70.2 (C-5), 56.5 (OCH<sub>3</sub>), 18.5 (C-6).

#### Tetra-acetyl BE-12406A (4)

To a suspension of BE-12406A (1, ca. 8 mg) in pyridine (2 ml), acetic anhydride (0.2 ml) was added and the suspension was stirred for 15 hours at room temperature. To the reaction mixture,  $H_2O$  was added and evaporated twice, the residue was extracted with CHCl<sub>3</sub>. The extract was evaporated to give 5.2 mg of 4.

#### References

- KOJIRI, K.; H. ARAKAWA, F. SATOH, K. KAWAMURA, A. OKURA, H. SUDA & M. OKANISHI: New antitumor substances, BE-12406A and BE-12406B, produced by a streptomycete. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties. J. Antibiotics 44: 1054~1060, 1991
- NAKANO, H.; Y. MATSUDA, K. ITO, S. OHKUBO, M. MORIMOTO & F. TOMITA: Gilvocarcins, new antitumor antibiotics.
  1. Taxonomy, fermentation, isolation and biological activities. J. Antibiotics 34: 266~270, 1981
- TAKAHASHI, K.; M. YOSHIDA, F. TOMITA & K. SHIRAHATA: Gilvocarcins, new antitumor antibiotics. 2. Structure elucidation. J. Antibiotics 34: 271~275, 1981
- HATANO, K.; E. HIGASHIDE, M. SHIBATA, Y. KAMEDA, S. HORII & K. MIZUNO: Toromycin, a new antibiotic produced by *Streptomyces collinus* subsp. albescens subsp. nov. Agric. Biol. Chem. 44: 1157~1163, 1980
- 5) HORII, S.; H. FUKASE, E. MIZUTA, K. HATANO & K. MIZUNO: Chemistry of toromycin. Chem. Pharm. Bull. 28: 3601~3611, 1980
- 6) MISRA, R.; H. R. TRITCH, III & R. C. PANDEY: Defucogilvocarcin V, a new antibiotic from Streptomyces arenae 2064: Isolation, characterization, partial synthesis and biological activity. J. Antibiotics 38: 1280~1283, 1985
- WEISS, U.; K. YOSHIHIRA, R. J. HIGHET, R. J. WHITE & T. T. WEI: The chemistry of the antibiotics chrysomycin A and B. Antitumor activity of chrysomycin A. J. Antibiotics 35: 1194~1201, 1982
- 8) FINDLAY, J. A.; J. S. LIU, L. RADICS & S. RAKHIT: The structure of ravidomycin. Can. J. Chem. 59: 3018~3020, 1981
- 9) KASAI, R.; M. OKIHIRA, J. ASAKAWA, K. MIZUTANI & O. TANAKA: <sup>13</sup>C NMR study of a  $\alpha$  and  $\beta$ -anomeric pairs of D-mannopyranosides and L-rhamnopyranosides. Tetrahedron 35: 1427 ~ 1432, 1979